
Chapter 5: Database Objects
IBM DB2 Universal Database V8.1
Database Administration Certification Preparation Course

Maintained by Clara Liu

Objectives

In this section, we will cover:
Buffer Pools
Table Spaces
Schemas and Catalogs
Data Types
Tables
Identity Columns
Temporary Tables
Views
Indexes
Constraints
Packages
Triggers, Functions, and Stored Procedures
Federated Database Support

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Database Object Hierarchy

Instance 1
dbm configuration file

Database
1

Catalog

Logs

DB config file

Database
2

Catalog

Logs

DB config file

Table1

Index1

BLOBs

Table2 Table3

View1

View2

View3

Index1

Index2

Table2

View1

Lock List

Table
spaces

Lock List

Buffer Pool

Buffer Pool

Buffer Pools

Used to buffer data in memory to reduce the number of I/O operations to
the physical database
Keep often requested data/index pages in memory
Keep infrequently accessed tables (e.g. random access into very large
table) out of main memory
Ability to keep large number of pages in extended storage cache
IBMDEFAULTBP is the default bufferpool created with every database

Table Spaces

Table space is a logical grouping of tables created within a database
Tables are created within table spaces
Two types of table spaces:

System Managed Space (SMS)
Database Managed Space (DMS)

Database Manager Instance

database1

Table space A

Table 1
Table space B

Table 4

database2

Table 2 Table 3

Table space A
Table 1 Table 2

Table Spaces

All database objects are stored within table spaces
Two types of storage:

System Managed Space (SMS)
Database Managed Space (DMS)

A table space is composed of one or more containers
Data allocated by extents within containers
Table spaces are either 4K, 8K, 16K or 32K pages

4K is default size
Cannot mix page sizes within a table space
Must be associated with a buffer pool with same page size

Table Spaces

With a simple CREATE DATABASE command:
CREATE DATABASE sample

Three SMS table spaces are created automatically in default locations:
SYSCATSPACE - system catalog tables
USERSPACE1 - default user data
TEMPSPACE1 - temporary data

 Can change table space storage type and explicitly specify the locations of
the containers, example:

CREATE DATABASE sample
 CATALOG TABLESPACE
 MANAGED BY SYSTEM
 USING ('c:\catdir1');
 USER TABLESPACE
 MANAGED BY DATABASE
 USING (FILE 'c:\db2files\usertbsp1 100, FILE 'c:\db2files\usertbsp2 100)
 TEMP TABLESPACE
 MANAGED BY SYSTEM
 USING ('c:\tempspace') ;

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Schema

A schema is a collection of database objects such as tables, views,
indexes, or triggers. It provides a logical classification of database objects
How is a Schema name used?

To fully-qualified table or other object name
"schemaname.tablename"
Can have multiple tables with the same name, but different schema names

eyerman.staff != jones.staff
Following schema names reserved

SYSCAT, SYSIBM, SYSSTAT, SYSFUN
Avoid schema names beginning with SYS

Enforced with triggers, UDFs, and UDTs

If database object does not specify a schema name, table qualified
with current authorization ID
Alternate schema names can be specified using

SET CURRENT SCHEMA or SET CURRENT SQLID command
CREATE ALIAS <aliasname> FOR <tab/view name>
CREATE VIEW

SYS Schemas

Created with every database and placed into the SYSCATSPACE
table space
SYSIBM

Base catalogs
Access not recommended

SYSCAT
SELECT authority GRANTed to PUBLIC
Catalog Read-only Views
Recommended way to obtain catalog information

SYSSTAT
Updateable Catalog Views - Influence the Optimizer

SYSFUN
User-Defined Functions

Roadmap to Catalog Tables

TABLE VIEW DESCRIPTION
SYSDBAUTH DBAUTH Authorities on database
SYSCHECKS CHECKS Check constraints
SYSCOLUMNS COLUMNS Column definitions

SYSCOLCHECKS COLCHECKS Columns referenced by check constraints

SYSCOLDIST COLDIST Detailed columns statistics
SYSKEYCOLUSE KEYCOLUSE Columns used in keys
SYSCONSTDEP CONSTDEP Constraint dependencies
SYSDATATYPES DATATYPES Datatype definitions (built-in & UDT)

SYSEVENTMONITORS EVENTMONITORS Event Monitor Definitions

SYSEVENTS EVENTS Events currently monitored

SYSFUNCPARMS FUNCPARMS Definitions of Parameters/Results of UDFs

SYSFUNCTIONS FUNCTIONS UDF definitions
SYSINDEXAUTH INDEXAUTH Index privileges
SYSINDEXES INDEXES Index definitions

Schema: Table = SYSIBM View = SYSCAT

TABLE VIEW DESCRIPTION
SYSPACKAGEAUTH PACKAGEAUTH Authorities on packages
SYSPACKAGEDEP PACKAGEDEP Package dependencies
SYSPACKAGES PACKAGES Package definitions
SYSREFERENCES REFERENCES Referential constraints definitions
SYSSTATEMENTS STATEMENTS Details of package SQL Statements
SYSTABAUTH TABAUTH Table Authorities
SYSTABCONST TABCONST Table constraint definitions
SYSTABLES TABLES Table definitions
SYSTABLESPACES TABLESPACES Table Space Definitions
SYSTRIGDEP TRIGDEPEVENTS Trigger dependencies
SYSTRIGGERS TRIGGERS Definitions of triggers
SYSVIEWDEP VIEWDEP View dependencies
SYSVIEWS VIEWS View definitions

Schema: Table = SYSIBM View = SYSCAT

Roadmap to Catalog Tables

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Data Types
Data Types

Numeric

Integer
SMALLINT
I N T E G E R
BIGINT

DECIMAL

Floating
Point

R E A L
DOUBLE

String

Character
String

Single Byte
C H A R
V A R C H A R
L O N G V A R C H A R
C L O B

GRAPHIC
VARGRAPHIC
LONG VARGRAPHIC
D B C L O B

Double Byte

Binary
 String

BLOB

Datet ime

D A T E
T I M E
T I M E S T A M P

Datal ink

D E C I M A L

VARCHAR FOR BIT DATA

LARGE Objects

Action
News

DB2
By The Book

DB2

Binary
Large
Object

Double
Byte
Character
Large
Object

Character
Large
Object

To store large character strings or files
To store large binary strings or files
Maximum size is 2 GB (1 GB for DBCLOBs)

LARGE Objects - Memory Considerations

Use LOB Locators to move LOBs by reference
Alternatively, move entire LOB

UP TO
2GB

*Single Record can hold maximum of 12
LOB Columns

Program
...
short indv;
long salary;
...

Reference ?
Entire LOB data movement?

CANADA USA

But... I

was only

doing a

hundred!

SPEED

LIMIT
100

SPEED

LIMIT
65

User-Defined Types

Need to establish context for values
DB2 enforced typing

User-Defined Types - Example

CREATE DISTINCT TYPE pound AS INTEGER WITH COMPARISONS ;

CREATE DISTINCT TYPE kilogram AS INTEGER WITH COMPARISONS ;

CREATE TABLE person
 (f_name VARCHAR (30)
 , weight_p pound NOT NULL
 , weight_k kilogram NOT NULL) ;

SELECT f_name FROM person
 WHERE weight_p > pound(30);

SELECT f_name FROM person
 WHERE weight_p > weight_k;

Fails

Selecting the Correct Data Type

Question DataType
Is the data fixed in length?
Stored in binary format?

CHAR
CHAR for bit data

Is the data variable in length?
Stored in binary format?

VARCHAR
VARCHAR for bit

data

Do you need to sort(order) the data?
CHAR,

VARCHAR
NUMERIC

Is the data to be used in arithmetic operations?

DECIMAL,REAL
DOUBLE,BIGINT

INTEGER,
SMALLINT

Does it contain decimal? DECIMAL, REAL
DOUBLE

Does the data have a specific meaning
(beyond DB2 base data type)? UDT

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

CREATE TABLE Command

Connect to database first
You must have SYSADM or DBADM authority or CREATETAB privilege
on the database
Example:
connect to eddb;
create table artists
 (artno SMALLINT NOT NULL
 , name VARCHAR(50) WITH DEFAULT 'abc'
 , classification CHAR(1) NOT NULL
 , bio CLOB(100K) LOGGED
 , article DATALINK LINKTYPE URL FILE
 LINK CONTROL MODE DB2OPTIONS,
 , picture BLOB(2M) NOT LOGGED COMPAT)
 INDEX IN indtbsp
 LONG IN longtbsp
 IN datatbsp;

Where is table placed by default

If a table is created without the IN clause, the table data (and its indexes
and LOB data) will be placed:

In the IBMDEFAULTGROUP table space (if it exists and if the page size is sufficient)
In a user created table space which is of the smallest pagesize that is sufficient for the table
Then it will go in USERSPACE1 (if it exists and has a sufficient page size)

The IN, INDEX IN, and LONG IN clauses specify which table spaces
regular data, index, and large objects are to be stored in

CREATE TABLE ... LIKE

Table columns have exact same names and attributes
One for one copy of columns

no constraints, triggers, or indexes copied
data not copied

May specify table or view
Example:

CREATE TABLE tab1new LIKE tab1;

Definition Only Table

Query used to define table
Can be subset of single table or combination of tables.
Table not populated
Column attributes of defined table based upon referenced table
Example:

CREATE TABLE t1new
AS (SELECT c1, c8, c10 FROM t1)
DEFINITION ONLY;

NULL Values

A null value represents an unknown state
The CREATE TABLE statement can contain the phrase NOT NULL
following the definition of each column.
This will ensure that the column contains a known data value.
Can specify a default value if NULL is entered
Example:

CREATE TABLE staff
(id SMALLINT NOT NULL WITH DEFAULT 10
, name VARCHAR(9)
, dept SMALLINT NOT NULL WITH DEFAULT 20
, job CHAR(5)
, years SMALLINT
, salary DECIMAL(7, 2)
, comm DECIMAL(7, 2) WITH DEFAULT);

system default value

user-defined
default value

System Default Values

If a specific default value is not specified following the DEFAULT keyword,
the system default value of the column data type is used
For example:

Numeric - 0
CHAR - Blanks
VARCHAR - A string of length 0
BLOB - A string of length 0

Check the DB2 Command Reference under the 'ALTER TABLE'
command for a complete list of data types' system default values

NULL and 0-Length Data Value Compression

Reduce storage for typical data warehousing scenarios
Increase performance of large scans

Available for all tables except global temporary tables
Specifies the VALUE COMPRESSION clause in the CREATE TABLE
command so that NULL and 0-length data values are to be stored more
efficiently for most data types
Eligible data types

NUMERIC
CHAR
VARCHAR
DBCS (fixed and variable)
BLOB

Example:
CREATE TABLE comp_t1
 (c1 INTEGER DEFAULT 0
 , c2 CHAR(10) DEFAULT NULL
 , CONSTRAINT comp_t1mpk PRIMARY KEY (c1)
) VALUE COMPRESSION ;

Not supported data types
DATE
TIME
TIMESTAMP
These values are dynamic and are always changing

If VALUE COMPRESSION is used, use the optional COMPRESS
SYSTEM DEFAULT option to further reduce disk space usage
Minimal disk space is used if the inserted or updated value is equal to the
system default value for the data type of the column
The default value will not be stored on disk. Data types that support
COMPRESS SYSTEM DEFAULT:

All numeric, fixed-length character, and fixed-length graphic string data types
This means that zeros and blanks can be compressed.

Must specify VALUE COMPRESSION if COMPRESS SYSTEM
DEFAULT is used, otherwise warningraised and commpression is not
enabled
Example:

CREATE TABLE comp_t1
 (c1 INTEGER NOT NULL COMPRESS SYSTEM DEFAULT
 , c2 CHAR(10) COMPRESS SYSTEM DEFAULT
 , CONSTRAINT comp_t1mpk PRIMARY KEY (c1)
) VALUE COMPRESSION ;

System Default Value Compression

Some Useful Commands

LIST TABLES
List tables for the current user

LIST TABLES FOR ALL
List all tables defined in the database

LIST TABLES FOR SCHEMA <schema>
List tables for the specified schema

DESCRIBE TABLE <tablename>
Show the structure of the specified table
Example: DESCRIBE TABLE department

Column Type Type
name schema name Length Scale Nulls
---------------------- ------------- ---------------------- ------------ --------- -----------
DEPTNO SYSIBM CHARACTER 3 0 No
DEPTNAME SYSIBM VARCHAR 29 0 No
MGRNO SYSIBM CHARACTER 6 0 Yes
ADMRDEPT SYSIBM CHARACTER 3 0 No
LOCATION SYSIBM CHARACTER 16 0 Yes

ALTER TABLE tab1 ADD RESTRICT ON DROP
DROP TABLE tab1

SQL0672N Operation DROP not allowed on table USER.TAB1
ALTER TABLE tab1 DROP RESTRICT ON DROP

Restrict Drop Table

Identity Columns

A numeric column in a table which automatically generates a unique
numeric value for each row that is inserted

One Identity column per table maximum

Values can be generated by DB2 always or by default
Generated always

values are always generated by DB2
applications are not allowed to provide an explicit value.

Generated by default
values can be explicitly provided by an application or if no value is given, then DB2
generates one
DB2 cannot guarantee uniqueness
intended for data propagation, unload/reload of a table

Identity Column - Generated Always Example
CREATE TABLE inventory
 (partno INTEGER

GENERATED ALWAYS AS IDENTITY
(START WITH 100 INCREMENTED BY 1),

description CHAR(20));
COMMIT;
INSERT INTO inventory VALUES (DEFAULT,'door'); --->inserts 100,door
INSERT INTO inventory (description) VALUES ('hinge'); --->inserts 101,hinge
INSERT INTO inventory VALUES (200,'windor'); --->error
COMMIT;

INSERT INTO inventory (description) VALUES ('lock'); --->inserts 102,lock
ROLLBACK;

INSERT INTO inventory (description) VALUES ('frame'); --->inserts 103,frame
COMMIT;

SELECT * FROM inventory;
 100 door
 101 hinge
 103 frame

Identity Columns - Generated By Default Example
CREATE TABLE inventory
 (partno INTEGER PRIMARY KEY
 GENERATED BY DEFAULT AS IDENTITY (START WITH 100 INCREMENTED BY 1),

description CHAR(20));
COMMIT;
INSERT INTO inventory VALUES (DEFAULT,'door'); --->inserts 100,door
INSERT INTO inventory (description) VALUES ('hinge'); --->inserts 101,hinge
INSERT INTO inventory VALUES (200,'window'); --->inserts 200,window
INSERT INTO inventory VALUES (102,'handle'); --->inserts 102,handle
INSERT INTO inventory VALUES (101,'bolt'); --->error, duplicate
COMMIT;
INSERT INTO inventory (description) VALUES ('lock'); --->error, duplicate
INSERT INTO inventory (description) VALUES ('lock'); --->inserts 103,lock
ROLLBACK;
INSERT INTO inventory (description) VALUES ('frame'); --->inserts 104,frame
COMMIT;
SELECT * FROM inventory order by partno;
 100 door
 101 hinge
 102 handle
 104 frame
 200 window

'Not Logged Initially' Tables

Flush to disk
when commit
successful

With Logging

Insert

table

New Row

Bufferpool

log

New Row
Old Row

Log Buffer

New Row

Bufferpool

table

No Logging

Flush to log
when
mincommit
reached/
commit
successful Dirty pages

written by
cleaners to disk
when softmax or
chngpgs_thresh
reached

'Not Logged Initially '
not enabled

'Not Logged Initially '
is enabled

Useful for situations needing to insert large amounts of data from alternate
source (another table or file)
Data inserted without logging
Use when recovery of table not required

'Not Logged Initially' Tables ...

To use this option, the table must first be created using ..
CREATE TABLE table-name ... NOT LOGGED INITIALLY

To improve concurrency after the CREATE
COMMIT should be issued ('Not Logged Initially' state turned off)

To reactivate the 'not logged initially' state:
ALTER TABLE table-name ACTIVATE NOT LOGGED INITIALLY;
INSERT INTO ... SELECT FROM ... ;
COMMIT; ('Not Logged Initially' state turned off)

OR
ALTER TABLE table-name ACTIVATE

NOT LOGGED INITIALLY
WITH EMPTY TABLE ;

INSERT INTO ... SELECT FROM ... ;
COMMIT ('Not Logged Initially' state turned off)

Declare Global Temporary Tables
Created and used by an application and dropped (automatically) when the
application terminates
Can only be accessed by the application that created the table
No entry exists in any catalog table to avoid catalog contention
If multiple applications create a table of the same name, each application
has a unique instance of that declared temporary table

No authority checking
No table locking or row locking
Minimal undo logging

Support the rollback of data changes made to global tempory table

NOT LOGGED clause manditory in V7, and now option in V8
Hold intermediate results during complex processing
Automatic cleanup
Index support

Any standard index can be created on a temporary table
Statistics support

RUNSTATS supported against the table

Temporary Tables

Declared temporary tables reside in a user temporary tablespace
Must be defined prior to creating any declared temporary tables
CREATE USER TEMPORARY TABLESPACE apptemps
 MANAGED BY SYSTEM USING ('apptemps');

DECLARE GLOBAL TEMPORARY TABLE temployess
 LIKE employee NOT LOGGED;

DECLARE GLOBAL TEMPORARY TABLE tempdept
 (deptid CHAR(6), deptname CHAR(20))
 ON COMMIT DELETE ROWS NOT LOGGED ;

DECLARE GLOBAL TEMPORARY TABLE tempprojects
 AS (fullselect) DEFINITION ONLY
 ON COMMIT PRESERVE ROWS NOT LOGGED
 WITH REPLACE IN TABLESPACE apptemps;

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Creating Views

CONNECT TO TESTDB
CREATE VIEW DEPTSALARY
 AS SELECT DEPTNO, DEPTNAME, SUM(SALARY) AS TOTSAL
 FROM PAYROLL GROUP BY DEPTNO,DEPTNAME

SELECT * FROM DEPTSALARY

DEPTNO DEPTNAME TOTSAL
------ ----------------- ----------
 10 MANUFACTURING 1000000.00
 20 ADMINISTRATION 300000.00
 30 MARKETING 250000.00
 ...

CREATE VIEW EMPSALARY
 AS SELECT EMPNO, EMPNAME, SALARY
 FROM PAYROLL, PERSONNEL
 WHERE EMPNO=EMPNUMB AND SALARY > 30000.00

Data for view not stored separately
Nested view supported
Needs to have at least SELECT privilege on the base tables of the view
View information kept in:

SYSCAT.VIEWS, SYSCAT.VIEWDEP, SYSCAT.TABLES

Views With Check Option

Specifies the constraint that every row that is inserted or updated through
the view must conform to the definition of the view
A row that does not conform to the definition of the view is a row that does
not satisfy the search conditions of the view
Example:

CREATE VIEW emp_view2
(empno, empname, deptno) AS
(SELECT id, name FROM employee WHERE dept = 10)
WITH CHECK OPTION;

When this view is used to insert or update with new values, the WITH
CHECK OPTION will restrict the input values for the dept column

CASCADED and LOCAL Check Option

If a view is defined based on another view or a table with check
constraints, it is possible to inherit or not to inherit the search condition,
two options available:

WITH CASCADED CHECK OPTION (default)
WITH LOCAL CHECK OPTION

 Example:
CREATE VIEW emp_view3 AS

(SELECT empno, empname, deptno FROM emp_view2 WHERE empno > 20)
WITH CASCADED CHECK OPTION ;

Conditions deptno = 10 AND empno > 20 will be checked for insert and update operations
against this view

Example:
CREATE VIEW emp_view4 AS

(SELECT empno, empname, deptno FROM emp_view3
 WHERE name = 'Smith')
WITH LOCAL CHECK OPTION ;

Only condition name='Smith' (defined in emp_view4) is checked for inserts and updates

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Creating Indexes

create unique index itemno on albums (itemno) desc
create index clx1 on stock (shipdate) cluster allow reverse scans
create unique index incidx on stock (itemno) include (itemname)
create index item on stock (itemno) disallow reverse scans collect detailed statistics

Index Characteristics:
ascending or descending
unique or non-unique
compound
cluster
bi-directional - may specify ALLOW or DISALLOW REVERSE
SCANS
include columns - may only be used if UNIQUE is specified

Examples:

RENAME INDEX xyz TO pdq
Allows to create new index, remove old, rename new name to old
name for consistency

Clustering Index

DB2 will attempt to store rows with equal or near key values physically
close together

Improve range searches (e.g. BETWEEN clauses)
Only one clustering index may exist for a table
Cannot be created on table with APPEND ON
Cluster ratio - the degree of data clustering of the index in percentage
Higher clustering means rows are ordered on the data pages in index key
sequence
Cluster factor - a more detailed measurement
than the cluster ratio

CREATEINDEX

High Cluster Ratio
Index

Low Cluster Ratio
Index

Table

Multi-Dimensional Clustering

Multi-dimensional Clustering
Provides range partitioning on multiple dimensions
Reduces need for indexing
Roll-in / roll-out improvements

Prior to MDC
Clustering in one dimension only
clustering NOT guaranteed
(degrades once page free space is
exhausted)

Region

Year

Region

Year

East

97

East North South West

98 99 99 00

All records in this
block are from the
West region and
from the year 2000

With MDC
Clustering guaranteed !
Smaller indexes
Faster query response
Simple definition syntax
Fast roll-in & roll-out

CREATE TABLE MDC1 (
Date DATE,
Province CHAR(2),
Color VARCHAR(10),
YearAndMonth generated as INTEGER(Date)/100, ...)

DIMENSIONS (YearAndMonth, Province, Colour)

11

13

18

10

3 4
26
2 0

8

7
145
32

16

36

22

30

2
15

17

33
31

43

9

19

42

41

39

24

25

44

38

34 5 0 45 54

53

51 5 6

121

6

= block 11Province
BCA B ON QB

99
01

99
02

99
03

99
04

Y
ea

rA
nd

M
on

th

Colou
r

Blue
Red

23

27

28

35

37

40

46

47

Type-2 Indexes

Version 8 adds support for type-2 indexes, advantages are:
Improve concurrency because the use of minimal next-key locking
An index can be created on columns that have a length greater than 255 bytes
Allowed online table reorg and online table load to be used on the table
Allowed usage of the new multidimensional clustering facility

All new indexes are created as type-2 indexes
If type-1 indexes already exist in a table, new index will also be a type-1 index
because type-1 and type 2 indexes cannot coexist on a table
All indexes created before Version 8 were type-1 indexes
To convert type-1 indexes to type-2 indexes, use the REORG INDEXES command

REORG INDEXES ALL FOR TABLE <tablename> CONVERT
To find out what type of index exists for a table, use the INSPECT command

 INSPECT CHECK TABLE NAME <tablename> INDEX NORMAL RESULTS <filename>
See Chapter 10 for more information

Design Advisor can help you design and define suitable indexes:
Find the best indexes for a problem query
Find the best indexes for a set of queries (a workload), subject to resource limits which
are optionally applied
Test an index on a workload without having to create the index

Can be invoked using either:
Control Center
db2advis command

Design Advisor Graphical Interface allows you to:
Specify the workload for which indexes are to be advised
Specify the SQL statement whose indexes are to be advised
Specify the input file containing one or more SQL statements
Specify the maximum space to be used for all recommended indexes in the existing
schema
Specify the maximum allowable time (in minutes) to complete the operation
Save the script to create the recommended objects in outfile
Update the catalog statistics
Create and schedule a task to create the recommeded indexes (if any)

Design Advisor

Design Advisor GUI

-d database-name
Specifies the database name

-w workload-name
Specifies the name of the workload for which
indexes are to be advised

-s "statement"
Specifies the text of a single SQL statement
whose indexes are to be advised

-i filename
Specifies the name of an input file containing
one or more SQL statements

>>-db2advis---d--database-name--+-------------------+----------->
 +--w--workload-name-+
 +--s--"statement"---+
 +--i--filename------+
 '--g----------------'

>--+-------------------------+--+----------------+-------------->
 '--a--userid--+---------+-' '--l--disk-limit-'
 '-/passwd-'

>--+---------------------+--+----+--+----+--+-------------+----><
 '--t--max-advise-time-' '--h-' '--p-' '--o--outfile-'

Design Advisor - db2advis Command

-l disk-limit
Specifies the maximum space to be used
for all recommended indexes in the existing
schema

-t max-advise-time
Specifies the maximum allowable time (in
minutes) to complete the operation

-o outfile
Saves the script to create the
recommended objects in outfile

Example #1:
db2advis -d prototype -s "SELECT * FROM addresses a

 WHERE a.zip IN ('93213', '98567', '93412')
 AND (company LIKE 'IBM%' OR company LIKE '%otus')"

The utility connects to the PROTOTYPE database, and recommends indexes for the
ADDRESSES table

Example #2:
db2advis -d prototype -w production -l 53 -t 20

The utility connects to the PROTOTYPE database, and recommends indexes that will
not exceed 53MB for queries and workload name is "production", the maximum
allowable time for finding a solution is 20 minutes

Design Advisor - Examples

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Referential Integrity

Referential Integrity or Referential Constraints are established with the
Primary Key clause
Unique constraint clause
Foreign Key clause
References clause

In the CREATE/ALTER TABLE statements

create table artists (artno INT,
 primary key (artno)
 foreign key dept (workdept)
 references department on delete no action)
in DMS01 ;

Referential Integrity Example
DEPARTMENT table (Parent table)

DEPTNO DEPTNAME MGRNO
(Primary key)

EMPNO FIRSTNAME LASTNAME WORKDEPT PHONENO
(Primary key) (Foreign key)

EMPLOYEE table (Dependent table)

or unique constraint

CREATE TABLE artists (artno INT,
 PRIMARY KEY (artno)
 FOREIGN KEY dept (workdept)
 REFERENCES department ON DELETE NO ACTION)
IN DMS01

Referential Integrity Rules
Insert Rules

Rule is implicit when a foreign key is specified.
backout insert if not found

Delete Rules
Restrict

Parent row not deleted if dependent rows are found.
Cascade

Deleting row in parent table automatically deletes any related rows in dependent tables.
No Action (default)

Enforces presence of parent row for every child after all other referential constraints
applied

Set Null
Foreign key fields set to null; other columns left unchanged.

Update Rules
Restrict

Update for parent key will be rejected if row in dependent table matches original values of
key.

No Action (default)
Update will be rejected for parent key if there is no matching row in dependent table.

Unique Constraints

Unique Key Unique Index Primary Key Unique Constraints

all values of
the key are
unique

can have
multiple unique
index in a table

can only have
one primary key
in a table

created when primary key or
unique clause is used

cannot contain
NULL

allow only one
NULL value

cannot contain
NULL

cannot contain NULL

it is a type of
unique index

if an index already exists, unique
index is created

if an index does not already exist,
primary key is created

can have multiple unique
constraint in a table but only one
can be primary key
cannot have more than one
unique constraint on the same set
of columns

Check Constraints

CREATE TABLE artists
(artno SMALLINT NOT NULL,
 name VARCHAR(50) WITH DEFAULT 'abc',
 classification CHAR(1) NOT NULL,
 bio CLOB(100K) LOGGED,
 picture BLOB(2M) NOT LOGGED COMPACT)
 CONSTRAINT classify
 CHECK (classification IN ('C','E','P','R'))
 IN dms01

If some rows do not meet the constraint then it will fail.
You can turn off checking, add the data and then add the constraint,
but the table will be placed in CHECK PENDING.
To modify a constraint you must drop it and create a new constraint.

Enforce data integrity at a table level
Once defined every update/insert must conform, otherwise it will fail

Informational Constraints

Rules that can be used in query rewrite but are not enforced
Standard constraints may result in the overhead for Insert/Update/Delete operations
A better alternative if application already verifies data
Informational constraint can be used by the SQL compiler but is not enforced by the database
manager
The SQL compiler includes a rewrite query stage which transforms SQL statements into forms
that can be optimized and improve data access path

Constraint Options
ENFORCED

The constraint is enforced by the database manager during normal operations such as insert,
update, or delete

NOT ENFORCED
When used, DB2 may return wrong results when any data in the table violates the constraint

ENABLE QUERY OPTIMIZATION
The constraint can be used for query optimization under appropriate circumstances

DISABLE QUERY OPTIMIZATION
The constraint can not be used for query optimization

Informational Constraints - Example
CREATE TABLE artists

(artno SMALLINT NOT NULL,
 name VARCHAR(50) WITH DEFAULT 'abc',

 classification CHAR(1) not null,
 CONSTRAINT classify

 CHECK (classification IN ('C','E','P','R'))
 NOT ENFORCED ENABLE QUERY OPTIMIZATION)

INSERT INTO artists
VALUES (1, 'SMITH', 'C'), (2, 'DONALD', 'P'), (3, 'MAX', 'E') ;

INSERT INTO artists VALUES (4, 'ELLIOT', 'X') ;
SELECT * FROM artists ;

ARTNO NAME CLASSIFICATION
------ ----------- --------------
 1 SMITH C
 2 DONALD P
 3 MAX E
 4 ELLIOT X
4 record(s) selected.

SELECT * FROM artists WHERE classification = 'X' ;
ARTNO NAME CLASSIFICATION
------ ----------- --------------

 4 ELLIOT X
1 record(s) selected.

DELETE FROM artists WHERE classification = 'X' ;
DB20000I The SQL command completed successfully.

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Packages

A package is a database object that contains information needed to
execute specific SQL statements in a single source file
A database application uses one package for every precompiled source file
that contains static or dynamic SQL statements
Packages are created by running the precompiler against a source file and
bind the generated bind files

myapp.o

Object
File

myapp.c

Modified
Source

File

myapp.bnd

Bind
File

myapp.sqc

Source
File

P
R
E
C
O
M
P
I
L
E
R

B
I
N
D
E
R

D
A
T
A
B
A
S
E

S
E
R
V
I
C
E
S

Tables
Indexes
Package

myapp

Executable
File

DB2 Library
Files

L
I
N
K
E
R

C
O
M
P
I
L
E
R

DB2 Include
Files

Binding a Bind File

The BIND Command:
BIND <bind filename>

Use the Configuration Assistant:

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

Triggers

A trigger defines a set of actions that are activated or triggered by an
update operation on a specified base table.
Actions may

cause other changes to the database
raise an exception

Use to
VALIDATION

Similar to constraints but more flexible
CONDITIONING

Allows new data to be modified/conditioned to a predefined value.
INTEGRITY

Similar to RI but more flexible
Three types of triggers:

INSERT
UPDATEs
DELETEs

A trigger can be fired BEFORE or AFTER an event

AFTER Trigger

CREATE TRIGGER passfail AFTER INSERT ON test_taken
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL

 UPDATE test_taken
 SET PASS_FAIL = CASE
 WHEN N.SCORE >=
 (SELECT CUT_SCORE FROM TEST
 WHERE NUMBER = N.NUMBER) THEN 'P'
 WHEN N.SCORE <
 (SELECT CUT_SCORE FROM TEST
 WHERE NUMBER = N.NUMBER) THEN 'F'
 END
 WHERE N.CID = CID
 AND N.TCID = TCID
 AND N.NUMBER = NUMBER
 AND N.DATA_TAKEN = DATA_TAKEN

A trigger is defined to set the value of the column passfail dependent on
the score attained

CREATE TRIGGER pre9 NO CASCADE BEFORE INSERT ON test_taken
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL
 WHEN (N.START_TIME < '09:00:00')
 SIGNAL SQLSTATE '70003'
 ('Cannot assign seat before 09:00!')

CREATE TRIGGER aft5 NO CASCADE BEFORE INSERT ON test_taken
 REFERENCING NEW AS N
 FOR EACH ROW MODE DB2SQL
 WHEN (N.START_TIME +
 (SELECT SMALLINT(LENGTH) FROM test
 WHERE NUMBER = N.NUMBER) MINUTES > '17:00:00')
 SIGNAL SQLSTATE '70004'
 ('Cannot assign seat after 17:00!')

BEFORE Trigger

The triggers are defined to prevent a booking either before 09:00 or after 17:00

INSTEAD OF Triggers

Use view as single interface for ALL SQL operations
Specifies that the associated triggered action replaces the action against a
view
Only one INSTEAD OF trigger is allowed for each kind of operation (i.e.
INSERT, UPDATE, DELETE) on a given view
Restrictions:

The WHEN clause may not be specified for INSTEAD OF triggers (SQLSTATE 42613).

FOR EACH STATEMENT cannot be specified

CREATE TRIGGER student_v_insert
INSTEAD OF INSERT ON student_v
REFERENCING NEW AS N DEFAULTS NULL
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

INSERT INTO students VALUES (n.name, n.studentid) ;
INSERT INTO person VALUES (n.name, n.studentid, n.age, n.enrolldate) ;

END

CREATE TRIGGER student_v_delete
INSTEAD OF DELETE ON student_v
REFERENCING OLD AS O
FOR EACH ROW MODE DB2SQL
BEGIN ATOMIC

DELETE FROM students WHERE id = o.studentid ;
DELETE FROM PERSON WHERE name = o.name ;

END

INSTEAD OF Triggers - Examples

Functions

DB2 UDB provides three types of functions:
Scalar or Row Functions

Provide a value for each row in the result set
Date/Time, Mathematical, Character, etc

Column or Vector Functions
Provide a value based on a group of rows
Count, Min, Max, Avg, etc

Table Functions
Returns columns of a table, resembling a table created by a simple CREATE TABLE
statement

User Defined Functions can be in any of those types
Mechanism for creating extensions to SQL
Functions can be written in C, Java, OLE, and SQL

Example:
CREATE FUNCTION TAN (X DOUBLE)
 RETURNS DOUBLE
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN SIN(X)/COS(X)

Usage:
SELECT tan(rect_length) FROM shapes;

Functions

Stored Procedures

Perform intermediate processing avoiding transmitting data across network
Centralized administration and maintenance
Execute on the database server
Stored procedures can be written in C, Java, COBOL, OLE, and SQL
Example:

CREATE PROCEDURE update_salary
(IN employee_number CHAR(6)
, IN rate INTEGER
, OUT newsalary INTEGER)
LANGUAGE SQL
BEGIN

UPDATE emp
 SET salary = salary * (1.0 + rate / 100.0)
 WHERE empno = employee_number ;
SELECT salary INTO newsalary
 FROM emp WHERE empno = employee_number ;

END

Usage:
CALL update_salary (3422, 50, ?);

Chapter 5: Database Objects
Buffer Pools and Table Spaces
Schemas and Catalogs
Data Types
Tables, Identity Columns, Temporary Tables
Views

Indexes
Constraints
Packages
Triggers, Functions, Stored Procedures
Federated Database Support

DB2 federated database support is part of the IBM Information Integrator
Allows access to DB2 family databases and non-DB2 databases

DB2 has federated built-in support for:
DB2 for iSeries
DB2 for zSeries
Informix

Relational Connect adds transparent access to other databases:
Oracle
Sybase
Microsoft SQL Server

Federated Database

Setting Up a Federated Database System

Create WRAPPER
Routines stored in a library that allows the federated server to perform operations such as
connecting to a data source and retrieving data from it iteratively
CREATE WRAPPER DRDA LIBRARY 'libdb2drda.a' ;

Create SERVER
The SERVER defines the data source to the federated database with information that pertains
to the data source
CREATE SERVER crandall

 TYPE DB2/MVS VERSION 4.1
 WRAPPER DRDA
 AUTHORIZATION userid PASSWORD passwd
 OPTIONS (...) ;

Setting Up a Federated Database System (continued)

Create User Mapping
An association between the federated server and the data source user ID and password
Needs to define user mapping so that the federated server can pushdown requests to the data
source if required
CREATE USER MAPPING FOR user3

SERVER s1
OPTIONS
(REMOTE_AUTHID 'SYSTEM'
, REMOTE_PASSWORD 'MANAGER')

Create NICKNAME
An identifier used to reference the object located at the data source that will be accessed
CREATE NICKNAME dept

FOR os390a.hedges.department

Object Definition Review

You can CREATE or DROP the following objects:

But you can only ALTER:

Table View Alias
Bufferpool Schema Event Monitor
UDF Trigger Table Space
Index UDT Stored

Procedure
Nickname Wrapper Server

Table Table Space Nickname
Type Buffer Pool Wrapper
View Server

Only for structured types Only for views built on typed tables

